2,048 research outputs found

    The Information Of The Milky Way From 2MASS Whole Sky Star Count: The Bimodal Color Distributions

    Full text link
    The J-Ks color distribution (CD) with a bin size of 0.05 magnitude for the entire Milky Way has been carried out by using the Two Micron All Sky Survey Point Source Catalog (2MASS PSC). The CDs are bimodal, which has a red peak at 0.8 < J-Ks < 0.85 and a blue peak at 0.3 < J-Ks < 0.4. The colors of the red peak are more or less the same for the whole sky, but that of the blue peak depend on Galactic latitude, (J-Ks ~ 0.35 at low Galactic latitudes and 0.35 < J-Ks < 0.4 for other sky areas). The blue peak dominates the bimodal CDs at low Galactic latitudes and becomes comparable with the red peak in other sky regions. In order to explain the bimodal distribution and the global trend shown by the all sky 2MASS CDs, we assemble an empirical HR diagram, which is composed by observational-based near infrared HR diagrams and color magnitude diagrams, and incorporate a Milky Way model. In the empirical HR diagram, the main sequence stars turnoff the thin disk is relatively bluer, (J-Ks)0 = 0.31, when we compare with the thick disk which is (J-Ks)0 = 0.39. The age of the thin/thick disk is roughly estimated to be around 4-5/8-9 Gyr according to the color-age relation of the main sequence turnoff. In general, the 2MASS CDs can be treated as a tool to census the age of stellar population of the Milky Way in a statistical manner and to our knowledge this is a first attempt to measure the age.Comment: Accepted by ApJ on Sept. 11 201

    A New Large Super-Fast Rotator: (335433) 2005 UW163

    Get PDF
    Asteroids of size larger than 150 m generally do not have rotation periods smaller than 2.2 hours. This spin cutoff is believed to be due to the gravitationally bound rubble-pile structures of the asteroids. Rotation with periods exceeding this critical value will cause asteroid breakup. Up until now, only one object, 2001 OE84, has been found to be an exception to this spin cutoff. We report the discovery of a new super-fast rotator, (335433) 2005 UW163, spinning with a period of 1.290 hours and a lightcurve variation of r′∼0.8r'\sim0.8 mag from the observations made at the P48 telescope and the P200 telescope of the Palomar Observatory. Its Hr′=17.69±0.27H_{r'} = 17.69 \pm 0.27 mag and multi-band colors (i.e., g′−r′=0.68±0.03g'-r' = 0.68\pm0.03 mag, r′−i′=0.19±0.02r'-i' = 0.19\pm0.02 mag and SDSS i−z=−0.45i-z = -0.45 mag) show it is a V-type asteroid with a diameter of 0.6+0.3/−0.20.6 +0.3/-0.2 km. This indicates (335433) 2005 UW163 is a super-fast rotator beyond the regime of the small monolithic asteroid.Comment: 18 pages, 4 figures, 1 table Accepted by ApJ

    Relationship between cognitive function and symptomology with self-stigma in patients with schizophrenia-spectrum disorders

    Get PDF
    E-PosterBACKGROUND: Self-stigma can be understood as a process of an individual gaining awareness of the associated stereotypes, agreeing with them and thus applying them to oneself [1]. This suggests the involvement of complex cognitive processes behind the development of self-stigma. Previous studies have also suggested that clinical symptoms are related to both cognitive function and self-stigma [2,3]. The current study examined the relationship of cognitive functions, clinical symptoms and self-stigma ...published_or_final_versio

    Asteroid Spin-Rate Study using the Intermediate Palomar Transient Factory

    Get PDF
    Two dedicated asteroid rotation-period surveys have been carried out using data taken on January 6-9 and February 20-23 of 2014 by the Intermediate Palomar Transient Factory (iPTF) in the RR~band with ∼20\sim 20-min cadence. The total survey area covered 174~deg2^2 in the ecliptic plane. Reliable rotation periods for 1,438 asteroids are obtained from a larger data set of 6,551 mostly main-belt asteroids, each with ≥10\geq 10~detections. Analysis of 1751, PTF based, reliable rotation periods clearly shows the "spin barrier" at ∼2\sim 2~hours for "rubble-pile" asteroids. We also found a new large-sized super-fast rotator, 2005 UW163 (Chang et al., 2014), and other five candidates as well. Our spin-rate distributions of asteroids with 3<D<153 < D < 15~km shows number decrease when frequency greater than 5 rev/day, which is consistent to that of the Asteroid Light Curve Database (LCDB, Warner et al., 2009) and the result of (Masiero et al., 2009). We found the discrepancy in the spin-rate distribution between our result and (Pravec et al., 2008, update 2014-04-20) is mainly from asteroids with Δm<0.2\Delta m < 0.2 mag that might be primarily due to different survey strategies. For asteroids with D≤3D \leq 3~km, we found a significant number drop at f=6f = 6 rev/day. The YORP effect timescale for small-sized asteroid is shorter that makes more elongate objets spun up to reach their spin-rate limit and results in break-up. The K-S test suggests a possible difference in the spin-rate distributions of C- and S-type asteroids. We also find that C-type asteroids have a smaller spin-rate limit than the S-type, which agrees with the general sense that the C-type has lower bulk density than the S-type.Comment: Submitted to ApJ (Jan, 2015). Accepted by ApJ (June, 2015). The whole set of the folded lightcurves will be available on the published articl

    313 new asteroid rotation periods from Palomar Transient Factory observations

    Get PDF
    A new asteroid rotation period survey have been carried out by using the Palomar Transient Factory (PTF). Twelve consecutive PTF fields, which covered an area of 87 deg2^2 in the ecliptic plane, were observed in RR band with a cadence of ∼\sim20 min during February 15--18, 2013. We detected 2500 known asteroids with a diameter range of 0.5 km ≤D≤\leq D \leq 200 km. Of these, 313 objects had highly reliable rotation periods and exhibited the "spin barrier" at ∼2\sim2 hours. In contrast to the flat spin rate distribution of the asteroids with 3 km ≤D≤\leq D \leq 15 km shown by Pravec et al. (2008), our results deviated somewhat from a Maxwellian distribution and showed a decrease at the spin rate greater than 5 rev/day. One super-fast-rotator candidate and two possible binary asteroids were also found in this work.Comment: 18 pages, 20 figures and 2 very long table

    The Palomar Transient Factory and RR Lyrae: The Metallicity–Light Curve Relation Based on ab-type RR Lyrae in the Kepler Field

    Get PDF
    The wide-field synoptic sky surveys, known as the Palomar Transient Factory (PTF) and the intermediate Palomar Transient Factory (iPTF), will accumulate a large number of known and new RR Lyrae. These RR Lyrae are good tracers to study the substructure of the Galactic halo if their distance, metallicity, and galactocentric velocity can be measured. Candidates of halo RR Lyrae can be identified from their distance and metallicity before requesting spectroscopic observations for confirmation. This is because both quantities can be obtained via their photometric light curves, because the absolute V-band magnitude for RR Lyrae is correlated with metallicity, and the metallicity can be estimated using a metallicity–light curve relation. To fully utilize the PTF and iPTF light-curve data in related future work, it is necessary to derive the metallicity–light curve relation in the native PTF/iPTF R-band photometric system. In this work, we derived such a relation using the known ab-type RR Lyrae located in the Kepler field, and it is found to be [Fe/H]_(PTF) = -4.089-7.346P + 1.280φ_(31) (where P is pulsational period and φ_(31) is one of the Fourier parameters describing the shape of the light curve), with a dispersion of 0.118 dex. We tested our metallicity–light curve relation with new spectroscopic observations of a few RR Lyrae in the Kepler field, as well as several data sets available in the literature. Our tests demonstrated that the derived metallicity–light curve relation could be used to estimate metallicities for the majority of the RR Lyrae, which are in agreement with the published values

    The Palomar Transient Factory and RR Lyrae: The Metallicity–Light Curve Relation Based on ab-type RR Lyrae in the Kepler Field

    Get PDF
    The wide-field synoptic sky surveys, known as the Palomar Transient Factory (PTF) and the intermediate Palomar Transient Factory (iPTF), will accumulate a large number of known and new RR Lyrae. These RR Lyrae are good tracers to study the substructure of the Galactic halo if their distance, metallicity, and galactocentric velocity can be measured. Candidates of halo RR Lyrae can be identified from their distance and metallicity before requesting spectroscopic observations for confirmation. This is because both quantities can be obtained via their photometric light curves, because the absolute V-band magnitude for RR Lyrae is correlated with metallicity, and the metallicity can be estimated using a metallicity–light curve relation. To fully utilize the PTF and iPTF light-curve data in related future work, it is necessary to derive the metallicity–light curve relation in the native PTF/iPTF R-band photometric system. In this work, we derived such a relation using the known ab-type RR Lyrae located in the Kepler field, and it is found to be [Fe/H]_(PTF) = -4.089-7.346P + 1.280φ_(31) (where P is pulsational period and φ_(31) is one of the Fourier parameters describing the shape of the light curve), with a dispersion of 0.118 dex. We tested our metallicity–light curve relation with new spectroscopic observations of a few RR Lyrae in the Kepler field, as well as several data sets available in the literature. Our tests demonstrated that the derived metallicity–light curve relation could be used to estimate metallicities for the majority of the RR Lyrae, which are in agreement with the published values

    Asteroid lightcurves from the Palomar Transient Factory survey: Rotation periods and phase functions from sparse photometry

    Get PDF
    We fit 54,296 sparsely-sampled asteroid lightcurves in the Palomar Transient Factory to a combined rotation plus phase-function model. Each lightcurve consists of 20+ observations acquired in a single opposition. Using 805 asteroids in our sample that have reference periods in the literature, we find the reliability of our fitted periods is a complicated function of the period, amplitude, apparent magnitude and other attributes. Using the 805-asteroid ground-truth sample, we train an automated classifier to estimate (along with manual inspection) the validity of the remaining 53,000 fitted periods. By this method we find 9,033 of our lightcurves (of 8,300 unique asteroids) have reliable periods. Subsequent consideration of asteroids with multiple lightcurve fits indicate 4% contamination in these reliable periods. For 3,902 lightcurves with sufficient phase-angle coverage and either a reliably-fit period or low amplitude, we examine the distribution of several phase-function parameters, none of which are bimodal though all correlate with the bond albedo and with visible-band colors. Comparing the theoretical maximal spin rate of a fluid body with our amplitude versus spin-rate distribution suggests that, if held together only by self-gravity, most asteroids are in general less dense than 2 g/cm3^3, while C types have a lower limit of between 1 and 2 g/cm3^3, in agreement with previous density estimates. For 5-20km diameters, S types rotate faster and have lower amplitudes than C types. If both populations share the same angular momentum, this may indicate the two types' differing ability to deform under rotational stress. Lastly, we compare our absolute magnitudes and apparent-magnitude residuals to those of the Minor Planet Center's nominal G=0.15G=0.15, rotation-neglecting model; our phase-function plus Fourier-series fitting reduces asteroid photometric RMS scatter by a factor of 3.Comment: 35 pages, 29 figures. Accepted 15-Apr-2015 to The Astronomical Journal (AJ). Supplementary material including ASCII data tables will be available through the publishing journal's websit

    A low-inclination neutral Trans-Neptunian Object in a extreme orbit

    Full text link
    We present photometric observations and numerical simulations of 2016 SD106_{106}, a low inclination (i=4.8∘i=4.8^{\circ}) extreme trans-Neptunian Object with a large semi-major axis (a=350a=350 au) and perihelion (q=42.6q= 42.6 au). This object possesses a peculiar neutral color of g−r=0.45±0.05g-r = 0.45\pm0.05 and g−i=0.72±0.06g-i=0.72\pm0.06, in comparison with other distant trans-Neptunian objects, all of which have moderate-red to ultra-red colors. A numerical integration based on orbital fitting on astrometric data covering eight years of arc confirms that 2016 SD106_{106} is a metastable object without significant scattering evolution. Each of the clones survived at the end of the 1 Gyr simulation. However, very few neutral objects with inclinations <5∘<5^{\circ} have been found in the outer solar system, even in the main Kuiper belt. Furthermore, most mechanisms which lift perihelion distances are expected to produce a very low number of extreme objects with inclinations <5∘<5^{\circ}. We thus explored the possibility that a hypothetical distant planet could increase the production of such objects. Our simulations show that no 2016 SD106_{106}-like orbits can be produced from three Kuiper belt populations tested (i.e. plutinos, twotinos, and Haumea Family) without the presence of an hypothetical planet, while a few similar orbits can be obtained with it; however, the presence of the additional planet produces a wide range of large semimajor-axis / large perihelion objects, in apparent contradiction with the observed scarcity of objects in those regions of phase space. Future studies may determine if there is a connection between the existence of a perihelion gap and a particular orbital configuration of an hypothetical distant planet.Comment: 10 pages, 4 figures, 1 tables, accepted for publication in the ApJ Letter
    • …
    corecore